
Concord

acidghost

Network Protocol

Based on Kademlia (Maymounkov and Mazieres 2002) and its extension
S/Kademlia (Baumgart and Mies 2007). Each node is identified by a nodeId
which is computed using a crypto puzzle. The puzzle generates also a key pair
that is used to sign and verify integrity of messages.

Kademlia builds a structured overlay network, so nodes connections are not built
at random, but following the protocol’s rules. Data (in a file-sharing application
for example) and routing information are held in a distributed hash table (DHT).
The word distributed means that global information are not held anywhere and
any peer maintains a small portion of it; more specifically only the portion it is
responsible for, again following the protocol’s rules.

Kademlia uses four RPCs for node / value lookup, routing table maintenance
and storing values in the DHT:

• ping: usual ping / pong request to check liveness of nodes;
• store: instructs the target node to store a (key, value) pair;
• find_node: takes a nodeId as an argument and the recipient of the request

returns a list of k triples (IPaddr, UDPport, nodeId) of nodes closest to
the queried nodeId;

• find_value: behaves like find_node with the exception that if the target
node has previously received a store request for the target key, it will
return the stored value directly.

At the moment Concord implements only ping and find_node RPCs. This is
because the other ones seem related to a file-sharing application. The future
development of the voting protocol will tell us if and in what extent Concord
will need to implement store and find_value procedures.

Nodes are stored in a DHT. The local DHT is organized in k-buckets. For each
bit in the nodeId, a node maintains a k-bucket, that is a FIFO list of nodes
sorted with a last-seen policy (least recently seen node at the head). Let be n
the number of bits in the nodeId. Each node maintains n k-buckets and each of
them contains nodes at distance between 2i and 2i+1 ∀i ∈ {0, ..., n− 1}.

1

0
1 0 1

0
1 0 1 0 1 0 1

0
1 0 1 0

1
0
1 0 10 1 0 1 0 1

0
1

In the above Figure, we show Kademlia’s DHT for nodeId 1100 in a network
where the ID space is in 4 bits. Each color corresponds to a different k-bucket’s
range. In each k-bucket node IDs can be present or not (in the Figure, all nodes
are shown as present) and each node maintains locally a list of k nodes for
each bucket. Note also that each k-bucket is responsible for progressively twice
the number of node IDs when moving away from the local node’s ID, that is
ni = 2ni−1∀i ∈ {1, ..., n − 1} and n0 = 1 where ni is the number of possible
node IDs in bucket i. By moving away from the current node ID, each k-bucket
covers twice the number of node IDs.

Broadcasting

This term is used to mean a one to all communication originating at a single
node. Broadcasting is for example used in BitTorrent to announce to other peers
when a node starts downloading a file, in Concord it is used to announce a new
poll. The problem of efficient broadcasting (that is, with a minimum number of
messages) has been tackled in (El-Ansary et al. 2003). The paper focuses on
Chord’s DHT and overlay structure, but gives great hindsights on the subject.
(Zoltdn Czirkos and Hosszu 2010) and (Zoltán Czirkos and Hosszú 2013) expand
on the same idea, with a focus instead on Kademlia. The broadcasting algorithm
exploits the network structure so to optimize the number of messages exchanged.
The basic idea is an application of the divide-et-impera strategy: each node at
each round is responsible for a smaller subtree than nodes at the previous round.

2

0
1 0 1

0
1 0 1 0 1 0 1

0 1 0 1
0

1
0

1 0 10 1 0 1 0 1

0001

0100

0101 0110 1000

1001

1010

1101 1111

1110

0
1

The Figure above shows an example execution of the broadcast algorithm with
node 1100 as the initiator. It starts the procedure by sending the message to
a randomly selected node for each k-bucket. Each of the contacted node is
then responsible for the subtree referenced by the k-bucket it belongs to. Each
message contains also the height of the tree the receiving node is responsible
for. Recursively then each of those nodes forwards the message to a randomly
selected node in each of its k-buckets among those that reference nodes at the
height it is responsible for (contained in the message originally received). When
forwarding the message, each node increases the height field in the message, in
order to limit the responsibility of the receiving node, based on its distance from
the sender.

Broadcast Algorithm 1 Input: message text, height

(0..height-1).each do |i|
if (buckets[i].size != 0) then

node = random node from buckets[i]
send(node, message, i)

end
end

The algorithm above implements the broadcast. An initiator node sets the height
to n − 1, the number of k-buckets, and the message text at will. Then starts
sending the message to a randomly picked node from each k-bucket i. The
buckets are sorted in a way that buckets[0] can contain maximum one node
and is the closest possible from itself (their node IDs differs by only one least
significant bit), that is k-bucket indexed with i contains nodes at a distance
between 2i and 2i+1. When sending a message to a node in the i-th bucket, the
sender sets the height in the message to i, so to limit the broadcasting scope
of the receiver. The height in this sense, represent the tree height-level already
covered by other nodes.

The problem with this algorithm is that some nodes are responsible of large

3

subtrees. If one of these nodes fails to deliver the message, big subtrees wont
receive it. Consider the first round of broadcasting, so messages are sent by the
initiator to a node in each bucket. The node picked from the farthest bucket will
be the only responsible of forwarding the message to other nodes in its subtree,
which covers addressed at a distance between 2n−1 and 2n, that is half the global
tree. If that node fails to deliver the message (because of any of the possible
failure types, i.e. crash, Byzantine), then, supposing a perfect binary tree, half
of the nodes in the network wont receive the message.

In (Zoltán Czirkos and Hosszú 2013) the reliability of the broadcasting algorithm
is defined as the ratio between nodes that receive the message and the total
number of nodes in the network: m = Nr

N where N is the total number of nodes
and Nr is the number of nodes that receive the message. The authors set a
probabilistic framework to evaluate the reliability starting from a measure of
successful delegate selection, that is a message is successfully broadcasted in
a subtree through the selection of a delegate like Algorithm 1. They define a
delegate selection to be successful if the packet does not encounter any of three
cases I) it is lost, II) the receiver is Byzantine or III) the entry in the routing
table for the receiver is stale. The successful delegation probability is P = 1−Ph

where Ph denotes the probability of failure. The authors show that for a balanced
tree of height b, the reliability of Algorithm 1 is given by m =

(1+P
2

)b.

To improve the reliability of the broadcasting algorithm, the authors of the same
paper proposed an upgraded version of Algorithm 1 that uses replication. In
Algorithm 2 the message is sent to more nodes in the same k-bucket, in this way
there is not any more a single point of failure in a subtree, but the responsibility
is replicated among a number kb of them. To maintain efficiency it is required
that kb ≤ k in order to avoid sending find_node requests. Moreover because a
node can now receive a message more than once, each message has to be tagged
with a unique identifier.

Broadcast Algorithm 2 Input: identifier, message text, height

return if seen_messages.includes? identifier
seen_messages = seen_messages + [identifier]
(0..height-1).each do |i|

if buckets[i].size != 0 then
nodes = Kb random nodes from buckets[i]
nodes.each do |node|

send(node, identifier, message, i)
end

end
end

By selecting more nodes from each k-bucket, the probability of failing to broadcast
the message in a subtree will be P kb

h where Ph is the probability of a single
message getting lost and of the broadcast failing in the subtree the receiving
node was responsible for. For example in a network with a fairly high amount

4

of packets loss, lets say Ph = 10%, selecting a replication factor of kb = 2 will
reduce the probability of losing a message to P 2

h = 1%, thus the probability of
successful delegation is increased from P = 90% to P = 99%. By substituting
P kb

h into Ph in the reliability’s formula and solve for kb, we obtain an expression
of the replication factor as a function of the reliability m, the tree height b and
the probability of packet loss Ph:

kb =
⌈

ln(2(1− b
√

m))
ln Ph

⌉

Voting Protocol

The goal of this protocol is to allow anyone to create a poll and collect opinions
on it. Each node is itself a voter and everyone is free to participate in the voting
process. Each voter is also responsible of verification of votes and votes counting.

Starting a Poll

Whenever someone wants to start a poll, he / she has to send a start_poll
RPC. This procedure contains the poll’s question and its hash, computed from
the text and a nonce. This hash is then used to build the poll’s Merkle tree
(details to come in a later section). Each node that wants to take part in the poll,
has to find a key pair for which the hash of the public key is numerically less then
the start_poll genesis hash (the created with the aforementioned RPC). The
process is similar to the nodeId generation in S/Kademlia and is used to prevent
huge amounts of valid key pairs for a single poll. The start_poll message
contains also a TTL (time-to-live) indicating the maximum time allowed to find
a valid key pair for the poll. TTL and crypto puzzle difficulty are measures that
control the ability of nodes to generate an high number of valid key pairs.

5

The node that starts the poll is responsible of sending the start_poll RPC to
other nodes. To do so it has to send the RPC to all nodes that it knows about
and sends the same request to other nodes that discovers through recursively call
find_node on new nodes that discovers. Another strategy / extension could be
to start searching for nodes randomly by generating a random nodeId starting a
recursive lookup for that node and sending start_poll requests along the way.
Nodes that decide to participate in the poll sends an ack_poll back to the node
from which came to know about the poll. This RPC does not contain nodes and
means that the node is taking responsibility to forward the start_poll message

6

to its neighbors (all nodes that it knows about or only k closest neighbors are
options). Nodes that do not want to participate in the poll send an nack_poll
RPC containing its k closest nodes.

After the TTL expires, each node participating in the poll has a key pair that
can be used to vote the poll.

References

Baumgart, Ingmar, and Sebastian Mies. 2007. “S/Kademlia: A Practicable
Approach Towards Secure Key-Based Routing.” In Parallel and Distributed
Systems, 2007 International Conference on, 2:1–8. IEEE.

Czirkos, Zoltán, and Gábor Hosszú. 2013. “Solution for the Broadcasting in the
Kademlia Peer-to-Peer Overlay.” Computer Networks 57 (8). Elsevier: 1853–62.

Czirkos, Zoltdn, and Gdbor Hosszu. 2010. “Enhancing the Kademlia P 2 P
Network.” Periodica Polytechnica, Electrical Engineering 54 (3-4). Budapest
University of Technology and Economics: 87–92.

El-Ansary, Sameh, Luc Onana Alima, Per Brand, and Seif Haridi. 2003. “Efficient
Broadcast in Structured P2p Networks.” In International Workshop on Peer-to-
Peer Systems, 304–14. Springer.

Maymounkov, Petar, and David Mazieres. 2002. “Kademlia: A Peer-to-Peer
Information System Based on the Xor Metric.” In International Workshop on
Peer-to-Peer Systems, 53–65. Springer.

7

	Network Protocol
	Broadcasting

	Voting Protocol
	Starting a Poll

	 References

